Surname	Centre Number	Candidate Number
Other Names		2

GCE A LEVEL – NEW

CHEMISTRY – A2 unit 3 Physical and Inorganic Chemistry

TUESDAY, 13 JUNE 2017 – AFTERNOON

1 hour 45 minutes

1410U30-1

	For Exa	aminer's us	e only
	Question	Maximum Mark	Mark Awarded
Section A	1. to 6.	10	
Section B	7.	7	
	8.	10	
	9.	15	
	10.	11	
	11.	10	
	12.	17	
	Total	80	

ADDITIONAL MATERIALS

In addition to this examination paper, you will need a:

• calculator;

wjec

• Data Booklet supplied by WJEC.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Section A Answer all questions in the spaces provided.

Section B Answer all questions in the spaces provided.

Candidates are advised to allocate their time appropriately between **Section A (10 marks)** and **Section B (70 marks)**.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 80.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.

The assessment of the quality of extended response (QER) will take place in **Q.8**(*b*).

If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

\sim
·)
~
_

Answer all questions in the spaces provided. When aqueous iodide ions are added to an aqueous solution of lead(II) nitrate, a precipitate is formed. (a) Give the colour of the precipitate. [1] (b) Write an ionic equation for the reaction that occurs, including state symbols. [1] (b) Write an example of a transition metal used as a catalyst. You should name the metal and identify the reaction it catalyses. [1] Give the coloride, CaCl ₂ , is soluble in water. Use the values below to explain why this is the case. [2] Equation 1 Ca ²⁺ (g) + 2Cl ⁻ (g) — CaCl ₂ (s) $\Delta H^{\theta} = -2237 \text{ kJ mol}^{-1}$ Equation 2 Ca ²⁺ (g) + 2Cl ⁻ (g) + aq — CaCl ₂ (aq) $\Delta H^{\theta} = -2378 \text{ kJ mol}^{-1}$		SECTION A	
When aqueous iodide ions are added to an aqueous solution of lead(II) nitrate, a precipitate is formed. (a) Give the colour of the precipitate. [1] (b) Write an ionic equation for the reaction that occurs, including state symbols. [1] Give an example of a transition metal used as a catalyst. You should name the metal and identify the reaction it catalyses. [1] Calcium chloride, CaCl ₂ , is soluble in water. Use the values below to explain why this is the case. [2] Equation 1 Ca ²⁺ (g) + 2Cl ⁻ (g) \longrightarrow CaCl ₂ (s) $\Delta H^{\theta} = -2237$ kJ mol ⁻¹ Equation 2 Ca ²⁺ (g) + 2Cl ⁻ (g) + aq \longrightarrow CaCl ₂ (aq) $\Delta H^{\theta} = -2378$ kJ mol ⁻¹		Answer all questions in the spaces provided.	
(a) Give the colour of the precipitate. [1] (b) Write an ionic equation for the reaction that occurs, including state symbols. [1] Give an example of a transition metal used as a catalyst. You should name the metal and identify the reaction it catalyses. [1] Calcium chloride, CaCl ₂ , is soluble in water. Use the values below to explain why this is the case. [2] Equation 1 $Ca^{2+}(g) + 2Cl^{-}(g) \longrightarrow CaCl_{2}(s) \qquad \Delta H^{\theta} = -2237 \text{ kJ mol}^{-1}$ Equation 2 $Ca^{2+}(g) + 2Cl^{-}(g) + aq \longrightarrow CaCl_{2}(aq) \qquad \Delta H^{\theta} = -2378 \text{ kJ mol}^{-1}$	When aqueou formed.	is iodide ions are added to an aqueous solution of lead	l(II) nitrate, a precipitate is
(b) Write an ionic equation for the reaction that occurs, including state symbols. [1] Give an example of a transition metal used as a catalyst. You should name the metal and identify the reaction it catalyses. [1] Calcium chloride, $CaCl_2$, is soluble in water. Use the values below to explain why this is the case. [2] Equation 1 $Ca^{2+}(g) + 2Cl^{-}(g) \longrightarrow CaCl_2(s) \qquad \Delta H^{\theta} = -2237 \text{ kJ mol}^{-1}$ Equation 2 $Ca^{2+}(g) + 2Cl^{-}(g) + aq \longrightarrow CaCl_2(aq) \qquad \Delta H^{\theta} = -2378 \text{ kJ mol}^{-1}$	<i>(a)</i> Give the	e colour of the precipitate.	[1]
Give an example of a transition metal used as a catalyst. You should name the metal and identify the reaction it catalyses. [1] Calcium chloride, CaCl ₂ , is soluble in water. Use the values below to explain why this is the case. [2] Equation 1 $Ca^{2+}(g) + 2CI^{-}(g) \longrightarrow CaCl_{2}(s) \qquad \Delta H^{\theta} = -2237 \text{ kJ mol}^{-1}$ Equation 2 $Ca^{2+}(g) + 2CI^{-}(g) + aq \longrightarrow CaCl_{2}(aq) \qquad \Delta H^{\theta} = -2378 \text{ kJ mol}^{-1}$	<i>(b)</i> Write a	n ionic equation for the reaction that occurs, including	state symbols. [1]
Calcium chloride, CaCl ₂ , is soluble in water. Use the values below to explain why this is the case. Equation 1 $Ca^{2+}(g) + 2Cl^{-}(g) \longrightarrow CaCl_{2}(s)$ $\Delta H^{\theta} = -2237 \text{ kJ mol}^{-1}$ Equation 2 $Ca^{2+}(g) + 2Cl^{-}(g) + aq \longrightarrow CaCl_{2}(aq)$ $\Delta H^{\theta} = -2378 \text{ kJ mol}^{-1}$	Give an exan identify the re	nple of a transition metal used as a catalyst. You she action it catalyses.	ould name the metal and [1]
case. [2] Equation 1 $Ca^{2+}(g) + 2Cl^{-}(g) \longrightarrow CaCl_{2}(s)$ $\Delta H^{\theta} = -2237 \text{ kJ mol}^{-1}$ Equation 2 $Ca^{2+}(g) + 2Cl^{-}(g) + aq \longrightarrow CaCl_{2}(aq)$ $\Delta H^{\theta} = -2378 \text{ kJ mol}^{-1}$	•••••		
Equation 1 $Ca^{2+}(g) + 2CI^{-}(g) \longrightarrow CaCl_2(s)$ $\Delta H^{\theta} = -2237 \text{ kJ mol}^{-1}$ Equation 2 $Ca^{2+}(g) + 2CI^{-}(g) + aq \longrightarrow CaCl_2(aq)$ $\Delta H^{\theta} = -2378 \text{ kJ mol}^{-1}$	Calcium chlor	ide, CaCl₂, is soluble in water. Use the values below	to explain why this is the
Equation 2 $Ca^{2+}(g) + 2Cl^{-}(g) + aq \longrightarrow CaCl_2(aq) \Delta H^{\theta} = -2378 \text{ kJ mol}^{-1}$	Calcium chlor case.	ide, CaCl ₂ , is soluble in water. Use the values below	to explain why this is the [2]
	Calcium chlor case. Equation 1	ide, $CaCl_2$, is soluble in water. Use the values below $Ca^{2+}(g) + 2Cl^{-}(g) \longrightarrow CaCl_2(s)$	to explain why this is the [2] $\Delta H^{\theta} = -2237 \text{ kJ mol}^{-1}$
	Calcium chlor case. Equation 1 Equation 2	ide, $CaCl_2$, is soluble in water. Use the values below $Ca^{2+}(g) + 2Cl^{-}(g) \longrightarrow CaCl_2(s)$ $Ca^{2+}(g) + 2Cl^{-}(g) + aq \longrightarrow CaCl_2(aq)$	to explain why this is the [2] $\Delta H^{\theta} = -2237 \text{ kJ mol}^{-1}$ $\Delta H^{\theta} = -2378 \text{ kJ mol}^{-1}$
	Calcium chlor case. Equation 1 Equation 2	ide, $CaCl_2$, is soluble in water. Use the values below $Ca^{2+}(g) + 2Cl^{-}(g) \longrightarrow CaCl_2(s)$ $Ca^{2+}(g) + 2Cl^{-}(g) + aq \longrightarrow CaCl_2(aq)$	to explain why this is the [2] $\Delta H^{\theta} = -2237 \text{ kJ mol}^{-1}$ $\Delta H^{\theta} = -2378 \text{ kJ mol}^{-1}$
	Calcium chlor case. Equation 1 Equation 2	ide, $CaCl_2$, is soluble in water. Use the values below $Ca^{2+}(g) + 2Cl^{-}(g) \longrightarrow CaCl_2(s)$ $Ca^{2+}(g) + 2Cl^{-}(g) + aq \longrightarrow CaCl_2(aq)$	to explain why this is the [2] $\Delta H^{\theta} = -2237 \text{ kJ mol}^{-1}$ $\Delta H^{\theta} = -2378 \text{ kJ mol}^{-1}$
	Calcium chlor case. Equation 1 Equation 2	ide, $CaCl_2$, is soluble in water. Use the values below $Ca^{2+}(g) + 2Cl^{-}(g) \longrightarrow CaCl_2(s)$ $Ca^{2+}(g) + 2Cl^{-}(g) + aq \longrightarrow CaCl_2(aq)$	to explain why this is the [2] $\Delta H^{\theta} = -2237 \text{ kJ mol}^{-1}$ $\Delta H^{\theta} = -2378 \text{ kJ mol}^{-1}$
	Calcium chlor case. Equation 1 Equation 2	ide, $CaCl_2$, is soluble in water. Use the values below $Ca^{2+}(g) + 2Cl^{-}(g) \longrightarrow CaCl_2(s)$ $Ca^{2+}(g) + 2Cl^{-}(g) + aq \longrightarrow CaCl_2(aq)$	to explain why this is the [2] $\Delta H^{\theta} = -2237 \text{ kJ mol}^{-1}$ $\Delta H^{\theta} = -2378 \text{ kJ mol}^{-1}$
	Calcium chlor case. Equation 1 Equation 2	ide, $CaCl_2$, is soluble in water. Use the values below $Ca^{2+}(g) + 2Cl^{-}(g) \longrightarrow CaCl_2(s)$ $Ca^{2+}(g) + 2Cl^{-}(g) + aq \longrightarrow CaCl_2(aq)$	to explain why this is the [2] $\Delta H^{\theta} = -2237 \text{ kJ mol}^{-1}$ $\Delta H^{\theta} = -2378 \text{ kJ mol}^{-1}$

1410U301 03

PMT

03

	nitrogen gas	copper metal	water	air	
Lowest					Highest

4

1410U301 05

		SECTION B	only
		Answer all questions in the spaces provided.	
7.	(a)	Ammonia is an example of a weak base. Describe what is meant by the term <i>weak base</i> . [1]	
	(b)	A mixture of ammonia and ammonium chloride in aqueous solution can be used as a basic buffer solution. Explain what is meant by a <i>buffer solution</i> and how this mixture can act as a buffer solution. [3]	
			1301
			1410

Examiner

only

1410U301 07

7

(ii) Select an appropriate indicator for this titration from the list below, giving a reason for your answer. [1]

Indicator	pH range
bromothymol blue	6.0 - 7.6
4-nitrophenol	5.0 - 7.0
methyl yellow	2.9 - 4.0
phenolphthalein	8.2 – 10.0

				Examin
8.	(a)	Some eight	e elements in the <i>p</i> -block form compounds where the <i>p</i> -block atom does not have electrons in its outer shell.	only
		(i)	Explain why nitrogen can only form a chloride with eight outer shell electrons, but phosphorus can form a chloride with a different number of outer shell electrons.[2]	
			You should give the chemical formulae of relevant compounds in your answer.	
	•••••			
		(ii)	Explain why aluminium forms compounds that are electron deficient. Show how one of these compounds can act to gain a full outer shell. [2]	
			You should give the dot and cross diagrams of the electron deficient species.	
		.		
		•••••		
		.		
		•••••		
		•••••		
				_

Examiner only

> 1410U301 09

(b) Below is some information about the oxides of two Group 4 elements.

Carbon	There are two common oxides of carbon. Carbon dioxide is an acidic oxide and carbon monoxide can be used as a reducing agent. Both of these are gases with very low boiling temperatures.
Lead	There are two common oxides of lead. Lead(II) oxide is an amphoteric oxide and lead(IV) oxide can be used as an oxidising agent. Both of these are solids that exhibit a large degree of ionic character.

Explain the differences between the oxides of carbon and lead, giving chemical equations to illustrate their acid/base and redox properties. [6 QER]

..... 10

Examiner

9. The reversible reaction shown below was one of the first to be studied in detail in the gas and liquid phases and in solution.

 $N_2O_4 \rightleftharpoons 2NO_2$

(a) One study of the liquid mixture showed that it contained 0.714 % NO₂ by mass. Calculate how many moles of NO₂ would be present in 25.0 g of this liquid. Give your answer to an appropriate number of significant figures.

- Both N₂O₄ and NO₂ are soluble in a range of solvents and the equilibrium constant, K_c , can be measured in these.
 - (i) Give the expression for the equilibrium constant, K_c , for this equilibrium, giving its unit if any. [2]

 $K_{\rm c} =$

(b)

Unit =

n(NO₂) = mol

Examiner only

PMT

(ii) The equilibrium constants for the N_2O_4/NO_2 equilibrium measured at room temperature in some different solvents are listed below.

Equilibrium constant, <i>K</i> _c (Unit not shown)
17.8
8.05
5.53
4.79
2.03
1.69

I. Samples of 0.4000 mol of N_2O_4 are dissolved separately in 1 dm³ of each of these solvents at room temperature and the reactions allowed to reach equilibrium. In one solution the concentration of N_2O_4 present at equilibrium is 5.81×10^{-2} mol dm⁻³. Find the value of the equilibrium constant in this solution and hence identify the solvent. [3]

1410U301 11

Solvent

II. The Gibbs free energy change, ΔG , of this reaction is different in different solvents. Explain how the data shows this and state, with a reason, which solvent would have the most negative ΔG value for this reaction. [2]

												⊐Exa
(C)	Nitro	gen o	dioxide	e is use	ed in the	produ	ction of nitri	c acid. It is	produce	d in two s	tages.	0
	Stage	e 1	4NH	₃ (g) +	50 ₂ (g)	\rightleftharpoons	4NO(g) +	6H ₂ O(g)	<i>ΔH</i> ^θ = -	-900 kJ m	iol ⁻¹	
	Stage	e 2	2NO)(g) +	O ₂ (g)	⇒	2NO ₂ (g)		$\Delta H^{\theta} = 0$	–115 kJ m	ol ⁻¹	
	(i)	Exp	lain w thermi	vhy the	e use of libria suc	a ca ch as s	talyst is ess stage 1.	ential in i	ndustrial	processe	s involving [2]]
	(ii)	A st of 5 exp	udent atm. I laining	attemp He obt y your i	oted to po ained or reasons.	erform lly a sr	stage 2 usin nall yield. Su	g a tempe Iggest hov	rature of v the yiel	450 K and d could be	a pressure improved [4]	e ,]
	······											
	······											
	·····											

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Η	NO ₃ (I) + 3HCl(g) —	\rightarrow NOCI(g) + Cl ₂ (g) + 2H ₂ O(l)	∆ <i>H</i> ^θ = −69 kJ i	mol ^{−1}
	Substance	Standard enthalpy change of formation, Δ _f H ^θ / kJ mol ^{−1}	Standard entropy, S ^θ / J K ^{−1} mol ^{−1}	
	HNO ₃ (I)	-173	156	
	HCI(g)		187	
	NOCI(g)	53	264	
	Cl ₂ (g)	0	223	
	H ₂ O(I)	-286	70	
(a)	Show that this is a r	edox reaction.		[1]
́b)	State why the entha	Ipy change of formation of $Cl_2(g)$ is z	ero.	[1]
(́b)	State why the entha	Ipy change of formation of CI ₂ (g) is z ard enthalpy change of formation of H	ero. łCl(g).	[1]

(d) (i) Calculate the free energy change, ΔG ⁹ , for this reaction at 25°C. [3] ΔG ⁰ =				
ΔG ⁹ =	Examinei only	Calculate the free energy change, ΔG^{θ} , for this reaction at 25 °C. [3]	(i)	(d)
ΔG ^θ = kJ mol ⁻¹ (ii) An alternative method of preparing aqua regia is to use concentrated hydrochloric acid with concentrated nitric acid. State, giving a reason, the effect of this on the value of ΔG ^θ at 25 °C. [1] (ii) The pH of a dilute solution of nitric acid is measured using a pH probe and has a value of 0.3. Calculate the concentration of this solution. [1] (e) (i) The pH of a dilute solution of nitric acid is measured using a pH probe and has a value of 0.3. Calculate the concentration of this solution. [1] Concentration = mol dm ⁻³ (ii) An alternative way of measuring the concentration of the solution is by titration against a standard solution of sodium hydrogencarbonate of concentration 0.500 mol dm ⁻³ . State and explain which of these two methods will give the more precise value for the concentration. [2] [2] [2] [3] [3]				
 (i) An alternative method of preparing aqua regia is to use concentrated hydrochloric acid with concentrated nitric acid. State, giving a reason, the effect of this on the value of ΔG⁶ at 25 °C. [1] (e) (i) The pH of a dilute solution of nitric acid is measured using a pH probe and has a value of 0.3. Calculate the concentration of this solution. [1] Concentration =mol dm⁻³ (ii) An alternative way of measuring the concentration of the solution is by titration against a standard solution of sodium hydrogencarbonate of concentration 0.500 mol dm⁻³. State and explain which of these two methods will give the more precise value for the concentration. [2] 		ΔG^{θ} =		
 (e) (i) The pH of a dilute solution of nitric acid is measured using a pH probe and has a value of 0.3. Calculate the concentration of this solution. [1] Concentration =		An alternative method of preparing aqua regia is to use concentrated hydrochloric acid with concentrated nitric acid. State, giving a reason, the effect of this on the value of ΔG^{θ} at 25 °C. [1]	(ii)	
 (e) (i) The pH of a dilute solution of nitric acid is measured using a pH probe and has a value of 0.3. Calculate the concentration of this solution. [1] Concentration =				
Concentration =		The pH of a dilute solution of nitric acid is measured using a pH probe and has a value of 0.3. Calculate the concentration of this solution. [1]	(i)	(e)
Concentration =				
 (ii) An alternative way of measuring the concentration of the solution is by titration against a standard solution of sodium hydrogencarbonate of concentration 0.500 mol dm⁻³. State and explain which of these two methods will give the more precise value for the concentration. [2] 		Concentration = mol dm ⁻³		
State and explain which of these two methods will give the more precise value for [2]		An alternative way of measuring the concentration of the solution is by titration against a standard solution of sodium hydrogencarbonate of concentration $0.500 \text{ mol dm}^{-3}$.	(ii)	
		State and explain which of these two methods will give the more precise value for the concentration. [2]		
11				
11			••••••	
	11			

Examiner

11. A hydrated compound $M_aAl_bZ_c.dH_2O$ contains an *s*-block metal ion, M, and a halide ion, Z. The following tests were undertaken.

Test	Result
Heating to constant mass	A 0.0200 mol sample lost 1.44 g when heated
Adding concentrated sulfuric acid	Observations included coloured fumes, an orange-brown solution, steamy fumes and a choking gas; there was no smell of rotten eggs
Adding excess silver nitrate to a solution	A 25.0 cm ³ sample of a solution of concentration 0.203 mol dm ^{-3} produced a precipitate with a dry mass of 3.814 g
Adding excess sodium hydroxide to a solution	A white precipitate formed which dissolved in excess sodium hydroxide
Elemental analysis	The hydrated compound was found to contain 1.63% by mass of <i>s</i> -block metal and 6.34% by mass of aluminium

(a) Calculate the value of d in the formula $M_aAl_bZ_c.dH_2O$.

[2]

d =

(b) (i) Identify the halide present in the compound, explaining fully all observations that led to your conclusion. [2]

	(ii) Calculate the value of c in the formula $M_aAl_bZ_c.dH_2O$. [2]	Examiner only
	с =	
(C)	State what the observations with sodium hydroxide indicate about the acidity/basicity of the aluminium ions. [1]	
•••••		
(d)	The M_r of the original hydrated compound is 425.62. Use all the information above to find the formula of the hydrated compound. Explain your reasoning. [3]	
	Formula of the budrated compound	
		10
17	© WJEC CBAC Ltd. (1410U30-1) Turn over.	

b) Vanadium exhibits the properties of a typical	I transition element, such as having variable
oxidation states and forming coloured comp variable oxidation states.	lexes. Explain why transition elements have [1]
) Blue ovovanadium(IV) cations VO^{2+} can b	be oxidised to vellow oxovanadium(V/) ions
VO_2^+ , by bromate(V) ions, BrO_3^- .	
	Standard electrode potential, E^{θ} / V
$VO_2^+ + 2H^+ + e^- \rightleftharpoons VO^{2+} + H_2O$	+1.00
$Br_2 + 2e^- \rightleftharpoons 2Br^-$	+1.09
BrO_3^- + $6H^+$ + $6e^ \rightleftharpoons$ Br^- + $3H_2O$	+1.44
formed when excess bromate(V) ions are ad reasons for your answer.	lded to a solution containing VO ²⁺ ions. Give [3]

(d) The effect of the concentration of H⁺ ions on the rate of the reaction in part *(c)* was studied using the same concentrations and volumes of all other reactants. The following data were collected.

рН	Rate / mol dm ⁻³ s ⁻¹
1.0	3.287 × 10 ^{−3}
1.4	1.308 × 10 ^{−3}
1.8	5.193 × 10 ⁻⁴
2.2	2.071 × 10 ⁻⁴

Find the order of the reaction with respect to H⁺. You **must** show your working. [3]

Order with respect to H⁺ =

[4]

(e)) The value of the rate constant, <i>k</i> , for this reaction at two temperatures is given below		
	Temperature / K	Rate constant (unit not shown)	
	288	0.0761	
	300	0.2873	

The activation energy for this reaction is $79.333 \text{ kJ mol}^{-1}$ and the Arrhenius equation is:

$$k = Ae^{-\left(\frac{E_a}{RT}\right)}$$

Calculate the value of the rate constant, *k*, at a temperature of 295 K.

k at 295K =

(f)	VO^{2+} ions may also be oxidised to VO_2^+ ions using coloured Ce^{4+} , which is itself reduced to colourless Ce^{3+} . A titration using this reaction does not usually include an indicator and colorimetry is sometimes used.	only
	State why an indicator may not be useful in this reaction and explain how colorimetry can be used to find the end point of the titration. [3]	
·····		
·····		
		17

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only

